9MA0/03: Statistics & Mechanics **Paper 3** mark scheme

uestion	Scheme	Marks	AO
1(a)	Width = $0.4 \times 5 = 2$ (cm)	B1	3.1
	Area = 12 cm ² Frequency = 15 so 1 cm ² = $\frac{5}{4}$ packet o.e	M1	1.1
	Frequency of 9 corresponds to area of 7.2 Height = $7.2 \div 2 = 3.6$ (cm)	A1	1.1
		(3)	
(b)	$[Q_2 =] (248+) \frac{22}{35} \times 4 \qquad \text{or} (\text{use of } (n+1)) (248+) \frac{22.5}{35} \times 4$ = awrt 250.5 (g) or 250.6	M1	1.1
	= awrt 250.5 (g) or 250.6	A1	1.1
		(2)	
(c)	Mean = awrt 250.4 (g)	B1	1.1
	$\left[\sigma_{x}=\right]\sqrt{\frac{5644171.75}{90}-\left(\frac{22535.5}{90}\right)^{2}}=\sqrt{15.64}$	M1	1.1
	= awrt 4.0 (g)	A1	1.1
	Accept $\left(s_x = \sqrt{\frac{5644171.75 - 90\left(\frac{22535.5}{90}\right)^2}{89}} = 3.977 \right)$	(3)	
(d)	$H_0: \mu = 250$ $H_1: \mu > 250$	B1	2.5
	$\overline{X} \sim N\left(250, \frac{4^2}{90}\right) \text{ and } \overline{X} > 250.4$	M1	3.3
	$P(\overline{X} > 250.4) = 0.171$	A1	3.4
	0.171 > 0.05 or $z = 0.9486 < 1.6449$	A1	1.1
	There is insufficient evidence that the mean weight of coffee is greater than 250 g, or there is no evidence to support the sellers claim.	A1	2.2
		(5)	
(e)	It is consistent as (the estimate of) the mean is close to (the estimate of) the median which is true for the normal distribution.	B1ft	3.5
		(1)	
		(14 r	nark

PMT

Notes:	
(a) B1: for correct width	
M1: for clear attempt to relate the area to frequency.	
May be implied by their height \times their width = 7.2	
A1: for height = 3.6 cm	
(b) M1: for $\frac{22}{35} \times 4$ or $\frac{22.5}{35} \times 4$	
A1: awrt 250.5 or 250.6	
(c) B1: awrt 250.4	
M1: for a correct expression for σ or s , can ft their mean	
A1: awrt 4.0 (allow $s = awrt 4.0$)	
(d) B1: hypotheses stated correctly	
M1: for selecting a correct model, (stated or implied)	
A1: for use of the correct model to find $p = awrt 0.171$ (allow $z = awrt 0.948$)	
A1: for a correct calculation, comparison and correct statement	
A1: for a correct conclusion in context mentioning mean weight and 250	
(e) B1: evaluating the validity of the model used in (d)	

itable with a correct reason points do not lie close to a straight line.		
re appear to be two populations <i>G</i> and <i>H</i> were removed it appears to be a negative correlation	B1	1.2
	(1)	
$\rho = 0$ H ₁ : $\rho > 0$	B1	2.5
al value 0.5509	M1	1.1a
EH0		
is evidence that pmcc is greater than zero	A1	2.2b
	(3)	
ng and Jacksonville	B1	2.2a
	(1)	
g and Jacksonville are the closest to the equator	B1	2.4
	(1)	
ata from one place.	B1	2.4
	(1)	
	(7 n	narks)
t statement using the data in the table		
potheses in terms of ρ		
g a suitable critical value compatible with their H_1		
g and Jacksonville – they do not need to be attached to G and H o	correctly.	
5	conclusion stated and Jacksonville – they do not need to be attached to G and H o	

part(c)

	Scheme	Marks	AOs
3(a)	[$A = \text{no. of bulbs that grow into plants with blue flowers,}]$ $A \sim B(40, 0.36)$	M1	3.3
	$p = P(A \ge 21) = 0.0240$	Al	1.1b
	C = no. of bags with more than 20 bulbs that grow into blue flowers, $C \sim B(5, p)$	M1	3.3
	So $P(C \le 1) = 0.9945$ awrt 0.995	A1	1.1b
		(4)	
(b)	[$T \sim$ number of bulbs that grow into blue flowers] $T \sim B(n, 0.36)$		
	T can be approximated by N($0.36n$, $0.2304n$)	B1	3.4
	$P\left(Z < \frac{244.5 - 0.36n}{\sqrt{0.2304n}}\right) = 0.9479$	M1	1.1b
	$\frac{244.5 - 0.36n}{\sqrt{0.2304n}} = 1.625 \text{ or } \frac{244.5 - 0.36x^2}{0.48x} = 1.625$	M1 A1	3.4 1.1b
	$0.36n + 0.78\sqrt{n} - 244.5 = 0$	M1	1.1b
	<i>n</i> = 625	Alcso	1.1b
		(6)	
		(10 r	narks
Notes:			
(a) M1: for	selecting an appropriate model for A		
A1: for	a correct value of the parameter p for C		
M1: for	selecting an appropriate model for C		
A1: for	awrt 0.995		
(b) B1: for a	correct normal distribution		
M1: for	correct use of continuity correction equal to a z value where $ z > 1$		
M1: for	standardisation with their μ and σ		
	a correct equation		
	ng a correct method to solve their 3-term quadratic		
A1: 625	on its own cso		

	Scheme	Marks	AOs
4 (a)	$P(S \cap D') = 0$	B1	1.1b
		(1)	
(b)	$P(C \mid S \cap D) = \frac{0.27}{0.6} = \frac{9}{20} = 0.45$	M1	3.1b
	∴ 80×"0.45"	M1	1.1b
	=36	A1	1.1b
		(3)	
(c)	$[P(C) \times P(S) = P(C \cap S)]$		
	$P(S) = 0.6, P(C) = 0.27 + v + u, P(S \cap C) = 0.27$	M1	3.1a
	$0.6 \times (0.27 + u + v) = 0.27$ or $u + v = 0.18$ o.e	A1	1.1t
	$\left[P(D \mid C) = \frac{P(D \cap C)}{P(C)} \right] P(D \cap C) = 0.27 + v$	M1	3.1a
	$\frac{14}{15} = \frac{0.27 + v}{0.27 + v + u}$ or $14u - v = 0.27$ o.e	A1	1.1t
	15u = 0.45	M1dd	1.1t
	u = 0.03 $v = 0.15$	A1	1.1t
	w = 0.22	A1ft	1.1t
		(7)	
		(11 n	narks
lotes:			
a) B1: co ⁻	rrect answer only		
80	a correct ratio of probabilities formula with at least one correct v	value and multiply	ring by
	correct answer $\mathbf{P}(\mathbf{C}) = \mathbf{P}(\mathbf{C}) = \mathbf{P}(\mathbf{C})$	D(C - C) = 1	4 1
c) MII to	r translating the problem and realising the equation $P(C) \times P(S) =$	$= P(C \cap S)$ needs	to be
used wit	h at least 2 parts correct.		
used wit A1: a co	rrect equation		
used wit A1: a co M1: for	rrect equation a correct probability formula with $P(D \cap C) = 0.27 + v$		
used wit A1: a co M1: for A1: a se M1dd: o equation	rrect equation a correct probability formula with $P(D \cap C) = 0.27 + v$ cond correct equation dependent on the previous 2 method marks being awarded. Solvir s by eliminating one variable. May be implied by either <i>u</i> or <i>v</i> co	-	neous
used wit A1: a co M1: for A1: a se M1dd: o	rrect equation a correct probability formula with $P(D \cap C) = 0.27 + v$ cond correct equation dependent on the previous 2 method marks being awarded. Solvir s by eliminating one variable. May be implied by either <i>u</i> or <i>v</i> co prrect	-	neous

Question	Scheme	Marks	AOs
5(a)	$P(L_x > 160) = P\left(Z > \frac{160 - 150}{25}\right)$		
	= P(Z > 0.4)		
	=1-0.6554		
	= awrt 0.345 0.34457	B1	1.1b
	Expected number = $12 \times "0.345"$	M1	1.1b
	= 4.13 (allow 4.14)	A1	1.1b
		(3)	
(b)	$P(L_{\gamma} < 180) = 0.841621$	B1	3.4
	$\frac{180-160}{\sigma} = 0.8416$	M1	1.1b
	$\sigma = $ awrt 23.8	A1	1.1b
		(3)	
(c)	The standard deviations for two companies are close but the mean for company <i>Y</i> is higher	M1	2.4
	therefore choose company Y	A1	2.2b
		(2)	
		(8 r	narks
Notes:			
	rt 0.345 • multiplying their probability by 12 3 (allow 4.14)		
	use of the correct model to find the correct value of z awrt 0.842 standardising = to a Z value $0.5 < Z < 1$ rt 23.8		
(c) M1: for	a correct reason following their part(b)		
A1: for	making an inference that follows their part(b)		

Question	Scheme	Marks	AOs			
1	r = (-4.5i + 3j)	B1	1.1b			
	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	3.1b			
	$(-4.5i + 3j) = 3u + 0.5(i - 2j) 3^2$	Alft	1.1b			
	$\mathbf{u} = (-3\mathbf{i} + 4\mathbf{j})$	A1	1.1b			
		(4)				
		(4 n	narks)			
Notes:						
B1: Correct	B1: Correct displacement vector					
M1: Use of integrations	Correct strategy and/or formula to give equation in \mathbf{u} only (could be obtained)	uined by tw	/0			
A1ft: Corre	ect equation in u only, following their displacement vector					
A1: Correct	A1: Correct answer					

Question	Scheme	Marks	AOs	
2	Differentiate wrt t	M1	1.1a	
	a = (2t - 3) i - 12 j	A1	1.1b	
	$(2t-3)^2 + (-12)^2$	M1	1.1b	
	$(2t-3)^2 + (-12)^2 = (6.5 / 0.5)^2$ oe	M1	2.1	
	$4t^2 - 12t - 16 = 0$	A1	1.1b	
	(t-4)(t+1) = 0	M1	1.1b	
	t = 4	A1	1.1b	
		(7)		
		(7 n	narks)	
Notes:				
M1: At leas	t one power going down			
	ect expression			
	f squares of components (with or without square root) of \mathbf{a} or \mathbf{F}			
M1: Equation	M1: Equating magnitude to 6.5/0.5 or 6.5 as appropriate and squaring both sides			

A1: Correct quadratic = 0 in any form

M1: Attempt to solve a 3 term quadratic

A1: 4

Question	Scheme	Marks	AOs
3 (a)	Resolve perp to the plane	M1	3.1b
	$R + 25\sin 30^\circ = 3g\cos 20^\circ$	A1	1.1b
	Equation of motion up the plane	M1	3.1b
	$25\cos 30^{\circ} - 3g\sin 20^{\circ} - F = 3a$	A1	1.1b
	F = 0.3R	B1	1.2
	Correct strategy: sub for <i>F</i> and solve for <i>a</i>	M1	3.1b
	$a = 2.4 \text{ or } 2.35 \text{ (m s}^{-2})$	A1	2.2a
		(7)	
(b)	e.g. Include air resistance	B1	3.5c
		(1)	
(c)	$R = 3g\cos 20^\circ$ so $F\max = 0.9 g\cos 20^\circ$	B1	3.1b
	Consider $3g\sin 20^\circ - 0.9g\cos 20^\circ$	M1	2.1
	Since > 0 , box moves down plane. *	A1*	2.2a
		(3)	
		(11 n	narks)
Notes:			
A1: g does M1: Using a A1: Neither B1: $F = 0.3$ M1: Correc A1: Only p	an appropriate strategy to set up first of two equations, with usual rules a not need to be substituted an appropriate strategy to set up second of two equations, with usual rule g nor F need to be substituted (-1 each error) R seen t overall strategy to solve problem by substituting for F and solving for a ossible answers, since $g = 9.8$ used.	es applying	5
(b) B1: e.g. incl	lude air resistance, allow for the weight of the rope		
	overall strategy (First equation could be implied) e difference or a comparison of the two values		

9

Question	Scheme	Marks	AOs
4(a)	Moments about A (or any other complete method)	M1	3.3
	$T\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$	A1	1.1.t
	$T\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$	A1	1.1.b
	T = 679 or 680 (N)	A1	1.1.b
		(4)	
(b)	Resolve horizontally	M1	3.1b
	$X = T \cos 60^{\circ}$	A1	1.1b
	Resolve vertically	M1	3.1b
	$Y = T\cos 30^{\circ} - 20g$	A1	1.1b
	Use of $\tan q = \frac{Y}{X}$ and sub for T	M1	3.4
	49° (or better), below horizontal, away from wall	Al	2.2a
		(6)	
(c)	Tension would increase as you move from <i>D</i> to <i>C</i>	B1	3.5a
	Since each point of the rope has to support the length of rope below it	B1	2.4
		(2)	
(d)	Take moments about G , $1.5Y = 0$	M1	3.3
	Y = 0 hence force acts horizontally.*	A1*	2.2a
		(2)	
		(14 n	narks
otes:			
1 : (A1A0 1 : (A0A0	ct overall strategy e.g. $M(A)$, with usual rules, to give equation in <i>T</i> only one error) Condone 1 error two or more errors) 679 or 680 (since $g = 9.8$ used)		
b) f1: Using	an appropriate strategy to set up first of two equations, with usual rules a e horiz. or $M(C)$	pplying	

e.g. Resolve vert. or M(D)

A1: Correct equation in *Y* only

M1: Using the model and their *X* and *Y*

A1: 49 or better (since g cancels) Need all three bits of answer to score this mark or any other appropriate angle e.g 41° to wall, downwards and away from wall

(c)

B1: Appropriate equivalent comment

B1: Appropriate equivalent reason

(**d**)

M1: Using the model and any other complete method e.g. the three force condition for equilibrium A1*: Correct conclusion GIVEN ANSWER

PMT

Question	Scheme	Marks	AOs
5(a)	Using the model and horizontal motion: $s = ut$	M1	3.3
	$12 = T \ge 45 \cos 10^{\circ}$	Al	1.1b
	T = 0.2707	A1	1.1b
	Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$s = 45T\sin 10^\circ + 4.9T^2$	Al	1.1b
	Correct strategy: sub for T and find s	M1	3.1b
	d = 3.5 - 2.4752 - 1	M1	3.1b
	= 2.5 (cm) (2 SF)	Al	2.2a
		(8)	
(b)	Using the model and vertical motion: $v = u + at$	M1	3.3
	$v = 45\sin 10^\circ + 9.8T$	Al	1.1b
	Speed = $((45\cos 10^{\circ})^2 + v^2)^{0.5}$	M1	3.1b
	46 (m s ⁻¹) (2 SF)	Al	1.1b
		(4)	
(c)	Model does not take account of air resistance.	B1	3.5b
	Model does not take account of the size of the tennis ball	B1	3.5b
		(2)	
		(14 n	narks)
Notes:			
A1: Correc A1: 0.271 of M1: Using A1: Correc M1: Sub for M1: Correc A1: 2.5 is th (b)	the model and correct strategy t equation r T and solve for s t method to find d using their s he only correct answer		
M1: Using A1: Correct	the model and correct strategy equation		
	ave found a v and usual rules apply. Square root is needed.		

A1: 46 (2 SF) is only correct answer

(c)

B1: Other appropriate answer e.g. spin of the ball, wind effect

B1: Other appropriate answer e.g. spin of the ball, wind effect